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Abstract. We present an extremely minimal ecosystem model which
takes account of thermodynamic constraints on the organisms’ meta-
bolism. This suggests a way to test the application of a hypothesised
principle of Maximum Entropy Production to ecosystems. It also puts
definite physical bounds on the rates at which matter can flow through
the system and paves the way for more detailed models that have thermo-
dynamic principles built in from the start. In providing the background
for this model we point out some connections between thermodynamic
principles and autopoiesis.

1 Introduction

Artificial life has had some successes at emulating many aspects of life in abstract
and simulation models. In order to do this some aspects of life in the physical
world are included in the model and the remainder assumed irrelevant for the
study in question. Most ALife studies have ignored thermodynamic issues such
as energy use and entropy production, yet if one considers living organisms as
self-sustaining processes such issues are fundamental.

The idea that ecosystems act so as to maximise a thermodynamic quantity
such as energy flow has been a running theme throughout the ecological litera-
ture [17]. In a parallel series of developments, notions of a principle of Maximum
Entropy Production (MEP) have been discussed for complex non-linear systems
that are maintained in a steady state out of thermodynamic equilibrium by ex-
ternal forces. So far the most successful applications of this idea have been to
large-scale models of planetary climates driven by energy input from the sun [13,
6]. It has been hypothesised that the MEP principle might be general enough
to apply to apply to living systems as well. In particular, MEP is thought to
hold arbitrarily far from equilibrium, making its applicability to living systems
uniquely plausible.

We present an extremely simple model of an ecosystem which takes account
of thermodynamic constraints on the organisms’ metabolism. We find that there
is a peak in entropy production at a particular value for the rate of matter
flux through the system. This demonstrates a way in which the hypothesised
principle of Maximum Entropy Production could be tested experimentally in
ecological systems. It also puts definite bounds on the rates of flux that can be
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achieved and paves the way for more detailed models that have thermodynamic
constraints built in from the start.

A further contribution of this paper is a clarification of the fundamental
interrelationship between the autopoietic perspective and thermodynamics in
section 2.1.

2 Background

2.1 Thermodynamics Applied to Life

Organisms have low entropy compared to their surroundings. We can relate this
to their structure by considering Boltzmann’s result that the entropy S of a sys-
tem is proportional to the logarithm of the number W of physical microscopic
states compatible with the system’s macroscopic state: S = k B log W.1 Struc-
ture is a macroscopic property. We can think of it as a set of constraints on
the system’s microscopic state. On a microscopic level one can only talk about
state: there is an atom here, another there and so on, and the concept of struc-
ture is not relevant. But moving to a macroscopic level and throwing away some
information we are able to structural statements such as “there is a membrane
here, beyond which the concentration of this compound is higher.” This state-
ment is macroscopic: there are many possible ways in which the atoms could
be arranged which are compatible with the concentration being higher behind
the membrane. We can think of these as a vast number of hypotheses about the
system’s (unobservable) microscopic state. These hypotheses can in principle be
enumerated, and so the structure has an entropy. The autopoietic concept of
organisation works at an even higher level, providing constraints on structure.

Without the constraint of the membrane (or more strictly, without the con-
straint of our knowledge of the membrane) there would be an even greater num-
ber of possible microstates, and hence a greater entropy. This is true for any
constraint, because all constraints rule out some of the possible states. Any
structured system will therefore have a lower entropy than its constituent mat-
ter would have in thermal equilibrium. Structure is central to the theory of
autopoiesis [9, 10], and to our knowledge this particular connection with ther-
modynamics is new to the literature on autopoiesis.

Morowitz [12] gives an estimate of 10−10
11

for the probability of a living
Escherichia coli cell spontaneously arising due to a thermal fluctuation in an
equilibrium system. Equivalently, if we take all the atoms that make up an E. coli

cell, then for every arrangement of those atoms that constitutes an E. coli cell
there are 1010

11

which do not. Applying Boltzmann’s formula, this corresponds

1 Jaynes [4] provides a clear elucidation of how this formula can be generalised to the
information entropy −kB

∑

i
pi log pi of the maximum entropy probability distribu-

tion of microstates compatible with the macroscopic constraints. Jaynes’ clear and
extensive writing on the nature of entropy has played a significant part in developing
this work.
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to an entropy difference of about 3.2 × 10−12 JK−1 between an E. coli cell and
its constituent matter in the equilibrium state2.

In order to maintain this low-entropy structure processes must continually
take place that reduce the organism’s entropy, countering its tendency to in-
crease. According to the second law of thermodynamics this can only be done
by increasing the entropy of the environment, so that the total entropy of the
system and its environment increases. Schrödinger [18] described this as “feed-
ing on negative entropy” in the environment. We can also think of this as the
organism performing work in order to maintain its structure. This work is done
by physical and chemical processes that occur due to constraints imposed by
the organism’s organisation itself, giving rise to the Work-Constraint cycle de-
scribed by Kauffman [5] and the self-referentiality that is central to the idea of
autopoiesis, as discussed in [11, 15].

Chemotrophic organisms achieve this reduction of internal entropy by alter-
ing chemical concentrations in their environment, taking in food and converting
it to waste. Plants absorb high-energy (and thus low-entropy) photons, emitting
radiation at a lower temperature, and most animals feed on low-entropy mat-
ter from other organisms, producing higher entropy waste. The model presented
here deals only with chemotrophic organisms, although the other types should
be straightforward to add.

2.2 Maximum Entropy Production

The historical origins of the MEP principle are complex [8] and its applicability
and justification are still debated but perhaps one of its earliest and most impres-
sive application is Paltridge’s [13] model of the Earth’s climate, which accurately
reproduces features of the Earth’s climate using a simple 10-box model.

In [6] this is distilled to a two-box model which despite its extreme sim-
plicity reproduces well the values of the latitudinal heat transfer rates of the
atmospheres of Earth, Mars and Titan. Entropy is produced in the atmosphere
due to the transfer of heat from the high temperature (TH) equator to the low
temperature (TC) poles. If the heat is transported at a rate F then entropy is
produced at a rate F ·(1/TC − 1/TH), which increases with F but decreases as
the two temperatures become closer together. A higher heat transfer rate in-
creases TC while decreasing TH, so there is a kind of tradeoff in which both very
low and very high transfer rates produce little entropy. At the extreme of zero
heat transfer the temperature difference is maximised but the F term is zero,
whereas in the upper limit heat transfer is maximised but the temperatures are
equal, so again there is no entropy production. In between is a value for F which
maximises the entropy production, and the MEP hypothesis predicts that the
observed value will tend to be close to this value. By making this assumption the
model is able to make good predictions while essentially ignoring all the complex
mechanisms by which the heat transfer takes place.

2 For comparison, a similar difference in entropy is involved in heating 2.3× 10−13 kg
of water from 300 to 301 K (the per kilogram entropy change is given by
heat capacity of water × ln(Tfinal/Tinitial)). An E. coli cell weighs about 10−15 kg.
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There is no widely accepted theoretical justification for the MEP principle
but Dewar [1, 2] has given some interesting arguments that it could arise from
information theory in a similar way to the second law itself [4]. If this is the case
then the Maximum Entropy Production principle would apply to any physical
system in a steady state, including not only planetary atmospheres but ecosys-
tems as well, with the maximisation taking place subject to whatever constraints
are acting on the system.

For a planet’s atmosphere the relevant constraint is the effect the flow rate
has on the temperature gradient. Our model shows that in an ecosystem an
analogous constraint can be imposed by a relationship between the rate at which
processes take place and the difference in chemical potential that drives them.

The idea that a thermodynamic maximisation principle might apply to eco-
systems has many precedents in the ecological literature [17], beginning with
Lotka’s 1922 proposal of a maximum energy flux principle [7]. Schneider and
Kay [16] have suggested that life is the result of a physical principle whereby
nonequilibrium systems “take advantage of all available means” to resist ex-
ternally applied gradients. Predictions from these ideas have usually taken the
form that a particular quantity such as energy flux or surface temperature will
increase or decrease over time (see [19] for an investigation into several such “goal
functions” using a population-based food web model). In contrast, because our
model exhibits a tradeoff closely analogous to that in [6] applying the MEP hy-
pothesis predicts a specific numerical value for the rate of matter flow through
the system.

2.3 Chemical Potential

Heat transfer in the Earth’s atmosphere is powered by a temperature difference
between the equator and the poles. Chemical potential is somewhat analogous
to temperature, and we can think of chemotrophic ecosystems as being powered
by a difference in this quantity. Just as the temperature of a system increases
with energy added to the system, the chemical potential of a substance within
a system increases with each mole of that substance added to the system. Con-
centrations tend to flow from areas of high chemical potential to areas of low
chemical potential, so that in thermochemical equilibrium the chemical poten-
tials are equal in all areas of the system.

This is also true for chemical reactions: if there is a reaction that converts
between two substances X and Y, it will take place in the direction that moves
the two chemical potentials together, so that at equilibrium they are equal. If the
system is isolated this corresponds to a maximum of the system’s entropy; if it
is held at constant temperature and pressure then it corresponds to a minimum
of Gibbs free energy within the system and a maximisation of the entropy of
the system and its surroundings. If there is a mixture of X and Y in which the
chemical potential µX of X is greater than that of Y (µY) then X will tend to
be spontaneously converted into Y, producing entropy. Work can be done by
coupling this spontaneous reaction to another one.
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Fig. 1. Important features of the ecosystem model. (a) The system consists of a chemi-
cal mixture containing a population of organisms that metabolise by converting food X
into waste Y. (b) A membrane allows X and Y to flow in and out of the system at rates
which depend on the difference in chemical potential on either side of the membrane.
(c) On the other side of the membrane is a well-mixed reservoir in which the chemical
concentrations of ‘food’ X and ‘waste’ Y are held at constant non-equilibrium values.

All chemical reactions can take place in both ‘forward’ and ‘backward’ direc-
tions in this way but some reactions are experienced as unidirectional because
the equilibrium point is such that when the chemical potentials are equal the
proportions of reactants are vanishingly small compared to the products.

In an ideal solution the relationship between chemical potential µX and con-
centration NX is given by µX = µX0 + RT lnNX, where µX0 is a constant that
depends only on the temperature and the nature of X, and R = NAk B =
8.31JK−1mol−1 is the gas constant. However, the exact form of this relation-
ship does not matter for what follows. This model is quite general in that all
that is required for it to work is that the chemical potential is an increasing
function of the concentration.

3 The Model

The basic components of an ecosystem are a population of organisms and a
source of work, in this case a difference between chemical potentials. In order for
interesting behaviour to take place there must be feedback between the organisms
and their environment. Perhaps the simplest way to achieve this is to imagine
that food is transported into the system and waste out by diffusion (figure 1).

The system contains a population of organisms (which need not be of the
same species) whose metabolism is very simple, with individuals maintaining
their structure by converting ‘food’ X into ‘waste’ Y. The system is coupled via a
membrane to a reservoir in which the concentrations of X and Y remain constant,
either because the reservoir is very large or because they are held constant by
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an externally powered process. The concentrations in the reservoir are such that
there is a greater proportion of X than there would be at chemical equilibrium.
X and Y diffuse through the membrane at rates that are proportional to the
difference in their chemical potentials on either side of the membrane.

In what follows we take the system boundary to be to the left of the mem-
brane in figure 1, so that it includes the metabolism of all the organisms but not
the membrane itself. This is by analogy to studies such as [13] and [6], which
calculate the entropy produced inside the Earth’s atmosphere, excluding the ab-
sorption of Solar radiation; the justification for this an important open quesion
for the theory of MEP. The system is open to matter flow, since matter flows
in in the form of X and out in the form of Y. If we assume that the system
reaches a steady state, so that the flow in is equal to the flow out, then it meets
Dewar’s [1] criteria for an analysis in terms of Maximum Entropy Production.3

3.1 Population Metabolic Rate

In traditional ecosystem models the focus tends to be on the numbers of indi-
viduals or the biomass of each species. These are treated as dynamical variables,
with rates of change that depend on the population numbers of other species, so
for instance the population of a predator species will grow more rapidly if there
are more of its prey species present.

However, in this model the focus is on the flow of matter through the system,
and the relevant variable to represent this is the Population Metabolic Rate M .
We define this as the total rate at which food is converted into waste within
the system. This takes place due to the combined effect of each individual’s
metabolism. There will of course be many other processes occurring within each
organism’s metabolism and within the system as a whole. In this scenario these
are all ultimately powered by the conversion of X into Y and we can use the
total conversion rate M to summarise the operation of the whole system.

Population metabolic rate is not necessarily directly related to population
size. An organism can sustain itself either by having a structure that decays
very slowly and using slow, efficient processes to maintain it or by having a
rapidly decaying structure which must be renewed at a faster rate, so for a given
population metabolic rate the population could consist of a small number of
rapidly metabolising individuals or a large number that metabolise slowly; or
there could be a small number which metabolise slowly as adults but which have
a high rate of turnover. Like the two-box climate model in [6] this model is not
concerned with what is inside the system, only with the rate at which it operates.

Another difference between this model and traditional models in ecology is
that rather than treating the population metabolic rate as a dynamical variable it

3 Dewar’s framework is very general in that the flows in and out can be of matter
rather than energy and they do not have to be fixed externally. In order to perform
an analysis along the lines of [6] the system must also be free to take on a range of
possible steady states, a requirement that is often expressed as needing many degrees
of freedom. Our hope is that the complexity of biological organisms and ecosystem
structure provide enough degrees of freedom to meet this requirement.
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is left unconstrained. This gives the system a range of possible steady states (one
for each value of M) which enables the use of the Maximum Entropy Production
principle to choose between them.

3.2 Mechanics of the Model

Because the concentrations of X and Y are held constant on the reservoir side of
the membrane, their chemical potentials remain constant in the reservoir also.
Their values µres

X
and µres

Y
are parameters in the model. Since the proportion

of ‘food’ X compared to ‘waste’ Y is assumed to be higher than it would be in
equilibrium, µres

X
> µres

Y
. The chemical potentials µX and µY within the system

are variables that depend on the population metabolic rate and the rate of
diffusion through the membrane.

The rate at which the fluids X and Y flow through the membrane are given by
the difference in chemical potential of the fluid on the two sides of the membrane,
multiplied by a diffusion constant D, which can be different for X and Y. Let
the concentrations of X and Y within the system be NX and NY, measured in
moles. Their rates of change are given by

ṄX = DX (µres
X

− µX) − M

ṄY = DY (µres
Y

− µY) + M .
(1)

The rate of diffusion through the membrane is positive for X and negative for Y.
In the steady state ṄX = ṄY = 0 and the diffusion term will be balanced by the
population metabolic rate M , from which we can obtain the chemical potentials
as functions of M : µX = µres

X
−M/DX and µY = µres

Y
+ M/DY. As M increases

the two potentials move closer together, and if no metabolism takes place then
the system will be in equilibrium with its surroundings (µX = µres

X
, µY = µres

Y
).

The total entropy produced per mole of X converted to Y is given by Σ =
(µX − µY)/T , which as a function of M is

Σ = 1

T

(

µres
X

− µres
Y

−

(

1

DX

+ 1

DY

)

M
)

. (2)

Σ is closely analogous to the inverse temperature difference (1/TC − 1/TH)
between the two heat baths in a classical heat engine or in the two-box climate
model in [6]. It represents an upper limit on the amount by which an organism
can reduce its structural entropy by metabolising one mole of X into Y. Equiv-
alently, the upper limit on the amount of work that can be performed per mole
metabolised is TΣ. Σ decreases with M (figure 2a), so that a slow population
metabolic rate will result in a greater ability to do work per mole metabolised.
M has a maximum value of Mmax = (µres

X
−µres

Y
)/( 1

DX

−
1

DY

) at which Σ becomes
zero and no work can be done. Converting X to Y faster than this rate would
require work to be done rather than being a source of work.

The total entropy production due to metabolism is given by

σ = MΣ = 1

T

(

(µres
X

− µres
Y

) M −

(

1

DX

+ 1

DY

)

M2

)

. (3)
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Fig. 2. (a) Σ = (µX − µY )/T tails off with increasing metabolic rate M . Σ is pro-
portional to the difference in chemical potential between X and Y, which is equal to
the maximum amount of work that can be done by converting one mole of X into Y.
With M > Mmax = 0.5 work would have to be done to perform the conversion since
Σ < 0. (b) The total entropy production σ = MΣ rises to a peak and then falls off
with increasing M. The values used for these plots are µres

X −µres

Y = 10, DX = DY = 0.1
and T = 300.

This function is zero at M = 0 and M = Mmax, with a maximum in between
at MMEP = 1

2
(µres

X
− µres

Y
)/( 1

DX

−
1

DY

). From a global point of view there is
therefore a tradeoff between slow and fast population metabolic rates (figure 2b).
A slow population metabolism leaves a large difference in potential between food
and waste but produces a sub-optimal amount of work because it occurs slowly,
whereas a fast population metabolic rate leaves too small a difference in potential
to perform as much work as the optimal rate.

The MEP principle suggests a hypothesis that real systems would tend to
have a population metabolic rate close to MMEP but it does not provide an
explanation in terms of mechanisms that take place within the system, just as
MEP based atmospheric models predict rates of heat transfer without specifying
the mechanisms by which the heat transfer takes place (see [6] for an interesting
discussion of this in relation to the Martian atmosphere). We leave open the
question of what ecological or evolutionary processes might occur to drive an
ecological system toward a state of maximum entropy production.

4 Extensions and Applications

4.1 Experimental Testing

A model along these lines could be used to test the application of MEP to ecosys-
tems experimentally. In our model food and waste enter and exit the system via
diffusion through a membrane but a similar calculation can be performed for
a chemostat-like bioreactor in which a constant inflow of food is balanced by a
constant outflow of the system’s contents (a mixture of food and waste). This
leads to a nonlinear decline in Σ with M but the analysis is qualitatively the
same and one can find a value MMEP for which σ is maximised. It should there-
fore be possible to perform a bioreactor experiment in which a measured value
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of M , which can be calculated from the amount of unused food in the system’s
outflow, is compared against the value predicted using the MEP principle.

In order for the MEPP to apply the organisms’ growth must be constrained
by the rate of food availability and/or waste disposal, and not significantly con-
strained by other factors. We suspect that this is not normally the case in a
bioreactor since the aim is usually to produce as high a growth or reaction rate
as possible so high concentrations of food are used, leading to a population
metabolic rate that is constrained only by physiological factors. In order to test
the applicability of MEP to biological populations it will probably be necessary
to perform a specialised bioreactor experiment in which the nutrient inflow is
very dilute and the system run until the population reaches a steady state. It
may also be important to use species for which the bioreactor is a close ap-
proximation to their natural environment because an environment to which the
organisms are not well adapted could induce additional constraints their growth.

4.2 More Detailed Models

This model was kept as minimal as possible and represents perhaps the simplest
possible ecosystem, with a single environmental feedback caused by a single
metabolic process which converts a single reactant into a single product.

Real systems of course contain multiple species with dissimilar metabolisms.
Real metabolisms are also more complex, performing multiple reactions at rates
that can vary depending on circumstances. More complex reactions result in
more complex biochemical feedbacks, including nutrient cycling. Real organisms
can also use photosynthesis or prey on other organisms. It should be relatively
straightforward to add each of these features to the model, which could then
be used as a powerful tool to study the interaction between metabolism and
environment at a very fundamental physical level, allowing studies along the
lines of [3] but rooted in a model constrained by real physics. It should also be
possible to add photosynthesis and organisms that can feed on other organisms,
resulting in a more widely applicable ecosystem model.

A general ecosystem model built on sound energetic principles would be an
extremely useful tool for simulating processes such as ecosystem succession [19]
or artificial ecosystem selection [14]. The current natural tool for such studies is
the generalised Lotka-Volterra equations, which are unsatisfying as they do not
model the abiotic environment and include no energetic constraints.

5 Conclusion

We have presented a simple model that illustrates the relationship between the
rate of chemical processes in an ecosystem and its rate of entropy production.
This shows that the applicability of a principle of Maximum Entropy Production
to living systems could be tested and opens up a range of possibilities for new
research directions.
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